

Lithographic Services & Application Engineering

micro resist technology has a long term experience in material development, processing & patterning as well as application engineering. Based on our product portfolio and hands-on experience, we offer the following lithographic services:

Processing

- Coating / dispensing systems
- Photolithographic tools (mercury arc lamp & UV-LED)
- Imprint tools (thermal & UV-based)
- Bake systems
- Plasma tool
- Anti sticking layer deposition

Metrology

- Film thickness measurements
- Mechanical profilometer
- Scanning electron microscope
- Atomic force microscope
- Spectroscopy (insitu)
- Dill-Parameter

micro resist technology GmbH Gesellschaft für chemische Materialien spezieller Photoresistsysteme mbH

Köpenicker Str. 325 12555 Berlin GERMANY
 phone
 +49 30 64 16 70 100

 fax
 +49 30 64 16 70 200

 mail
 sales@microresist.de

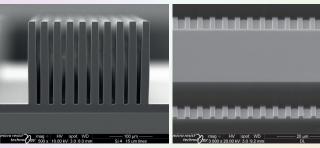
 info
 www.microresist.com

Lithographic Services & Application Engineering Coating – Patterning – Consulting

1. Substrate coating

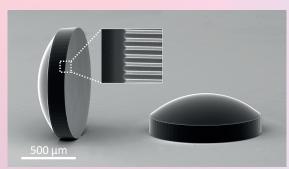
Fabrication of various film thicknesses (x)

	0.1 - 2 µm	2 - 5 µm	5 - 15 µm	15 - 50 µm	50 - 75 µm	75 - 5 00 μm	500 - 1000 μm
Positive resists	х	Х	Х	Х	Х	Х	
Negative resists	Х	Х	Х				
e-beam & DUV resists	Х						
SU 8 based resists		Х	Х	Х	Х	Х	х
Dryfilm resists**			Х	Х	Х	Х	
NIL* resists	Х	Х	Х	Х	Х	Х	
Optical polymers		Х	Х	Х	Х	Х	
UV PDMS				Х	Х	Х	х
Inkjet printing polymers**			Х	Х	Х		

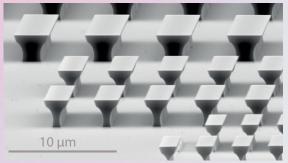

• Substrates: Silicon, glass, Au, Ni, Cu, CrAu, TiAu, flexible substrates, polymeric films, PCB

- Substrate size : Wafer 4" / 6", round and square are possible
- Anti-sticking layer for hard & flexible working stamps & masters (F13-TCS)

2. Lithographic patterning


Patterning of different thicknesses

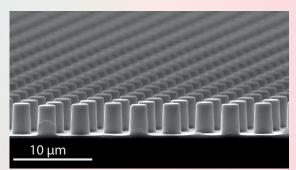
UV lithography (Hg-lamp: $\lambda = 365 / 405 / 436$ nm;LED: $\lambda = 365 / 390 / 410$ nm)Laser interference lithography, LIL ($\lambda = 405$ nm)Thermal & UV imprinting ($\lambda = 365 / 390$ nm)UV molding & replication ($\lambda = 365$ nm)Inkjet printing**



SU-8 lines and spaces with 180 µm height on top of 20 µm SU-8 base layer made by UV-lithography

SU-8 multi layers patterned by UV-lithography

Microlenses made of InkOrmo with integrated nano grating fabricated by a combination of inkjet dispensing and UVreplication



ma-N490 lift off pattern with noticeable undercut profile

* NIL stands for Nanoimprint Lithography, ** with external partners if needed

3-layer microfludic pattern made of SU-8 3000 and modified SU-8 all exposed with mask aligner

OrmoClear® pillar structure made by nanoimprinting

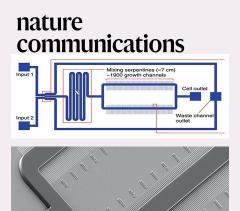
Lithographic Services & Application Engineering Coating – Patterning – Consulting

3. Mastering and prototyping: Examples

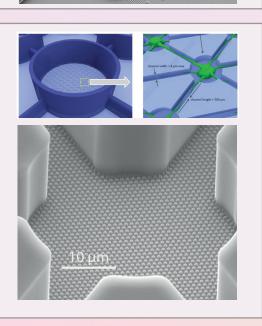
Fabrication microfluidic masters

For several universities and institutes we fabricated microfluidic masters based on customers chip design (top). These masters are structured with modified **SU-8** (bottom) and subsequently used for the fabrication of PDMS microfluidic devices by our customers themselves. The master design can have up to 4 layers with different dimensions. Possible lateral dimension start at 0.6 μ m at lowest film thicknesses of 0.3 μ m.

Kaiser, M. et al. Monitoring single-cell gene regulation under dynamically controllable conditions with integrated microfluidics and software. Nat Commun 9, 212 (2018)

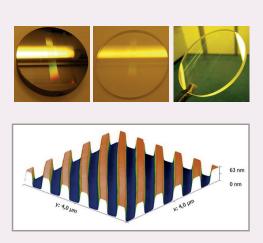

https://doi.org/10.1038/s41467-017-02505-0

Hierarchical structures for Bioanalytical lab-on-chip devices

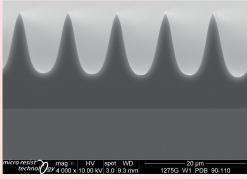

For the growth of neurons in micron-sized patterns (top) we enhanced bioanalytical lab-on-chip devices by transforming micro pattern into a hierarchical pattern.

The hierarchical structure with UV-exposed micropattern were made of SU-8 and are on top of previously nanoimprinted pillars made of **mr-NIL 6000E**. The chip was replicated subsequently into **mr-NIL210** (bottom).

Lohse, M. et al. Versatile fabrication method for multiscale hierarchical structured polymer masters using a combination of photo- and nanoimprint lithography, Micro and Nano Engineering, Volume 10 (2021)


200 um

Replicated High-Quality Micro-Optics

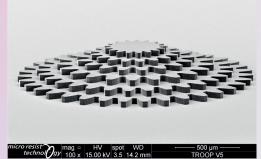

For the replication of high end reflection zone plates (top left), we developed a replication process based on **OrmoStamp**[®] for the working stamp (top middle) and **OrmoComp**[®] for the final sellable replica (top right). We optimized the UV-curing and baking steps to preserve the surface microroughness (0.5 nm rms), global flatness (< 1 μ m PV) and step height (60 nm) of the zone plate master.

These reflection zone plates are e.g. used for state of the art scientific applications in VUV sources for photoelectron spectroscopy.

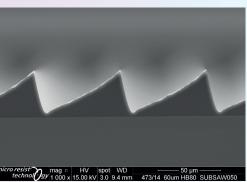
Lithographic Services & Application Engineering NEW HIGHLIGHTS

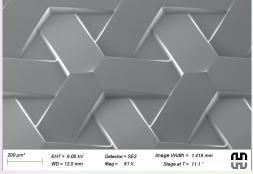
4. Greyscale Photoresist Patterning - Mask based Lithography & Photoresist Processing

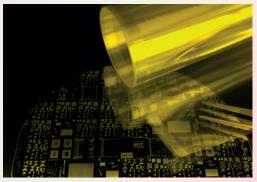
Periodic photoresist pattern in ma-P1200G with pattern depth approx. 13 µm using greyscale chromium mask photolithography process

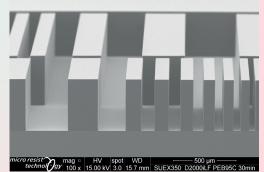


Fresnel lens test pattern in ma-P1200G photoresist with pattern depth approx. 60 µm fabricated by greyscale lithography utilizing a HEBS mask


5. Dry Film Production & Dry Film Processing


Roll-to-roll coating machine for dry film resists with variable thicknesses (in the example shown, the dry film is sealed with a white protective foil)


Multilayer UV-lithography patterning example realized with mr-LamiRes dry film, consisting of 6 layers of 50 μ m film thickness each


Aperiodic saw tooth pattern in ma-P1200G with pattern depth approx. 40 µm using greyscale chromium mask photolithography process

Advanced greyscale micro patterning with pattern depth approx. 90 μ m using laser direct writing and an optimized photoresist processing

In-house fabricated roll of mr-LamiRes dry film resist with 50 μm layer thickness, laminated on a 100 mm wafer and patterned by UV mask-aligner

Test pattern made of SUEX dry film with 350 µm film thickness exposed with i-line filter