

Positive Photoresists for UV, Laser & Greyscale Lithography

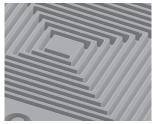
- ma-P 1200 series, ma-P 1275HV for standard UV lithography
- ma-P 1200G series for greyscale lithography
- ma-P 1200LIL series
 for laser interference lithography

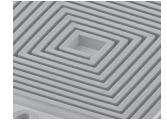
Unique features of the positive photoresists

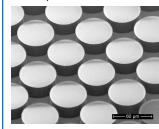
- Designed for UV Lithography (mask aligner, laser greyscale lithography, laser interference lithography)
- No post exposure bake
- Easy removal
- Ready-to-use resist solutions in a variety of viscosities
 - Made in Germany -

micro resist technology GmbH Gesellschaft für chemische Materialien spezieller Photoresistsysteme mbH

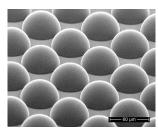
Köpenicker Str. 325 12555 Berlin GERMANY phone fax mail info +49 30 64 16 70 100 +49 30 64 16 70 200 sales@microresist.de www.microresist.com


Positive Photoresist Series and Thick Film Photoresists for UV lithography


Resist		ma-P 1200 series	ma-P 1275	ma-P 1275HV		
Spectral sensitivity	nm	330 - 450	350 - 450	350 - 450		
Ready-to-use solutions for various film thicknesses	μm	ma-P 1205 → 0.5 ma-P 1210 → 1.0 ma-P 1215 → 1.5 ma-P 1225 → 2.5 ma-P 1240 → 4.0 ma-P 1275 → 7.5 @ 3000 rpm	6 - 40 in one spin-coating step	10 - 60 in one spin-coating step		
Exposure dose @ 365 nm*	mJ cm ⁻²	35 - 150	150 - 3000	300 - 4000		
Developer		ma-D 331 & ma-D 331/S (NaOH based); mr-D 526/S (TMAH based)				


^{*} Mask aligner broadband exposure

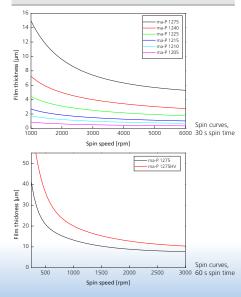
Resist patterning with mask aligner broadband exposure and pattern transfer


Resist mould for electroplating

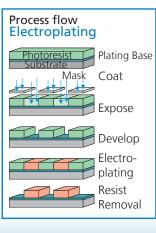
Resist pattern reflow

56 μm ma-P 1275HV mould

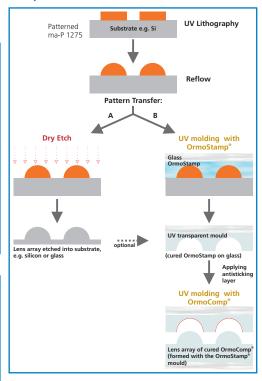
48 µm electroplated Ni


20 µm ma-P 1275, 60 µm diameter pillar


30 μm reflowed ma-P 1275, 60 μm diameter

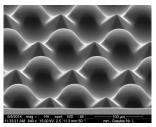

ma-P 1200 series and ma-P 1275 & ma-P 1275HV

for microsystems technology and microelectronics


- Film thickness up to 50 μm
- Broadband-, g- and i-line exposure
- High stability in acid and alkaline plating baths
- High dry and wet etch resistance
- Good thermal stability of the resist patterns attainable
- Aqueous alkaline development
- Side wall angle up to 87° with mask aligner broadband exposure
- Suitable for pattern reflow

Reflow of ma-P 1200/ ma-P 1200G and pattern transfer

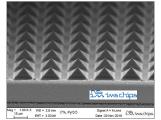
Main applications


- Etch mask metals and semiconductors
- Mould for electroplating
- Fabrication of micro optical components,
 e.g. micro lenses by pattern transfer from reflowed resist patterns
- Mask for ion implantation

Positive Photoresist Series for Greyscale Lithography

Resist		ma-P 1215G ma-P 1225G ma-P 1240G ma-P 1275G				3		
Film thickness *	μm	1.5	2.5	4.0	9.5	15	30	60
Spin-coating	rpm s	3000 30	3000 30	3000 30	3000 30	1500 30	500 60	1000 4
Spectral sensitivity	nm	350 - 450						
Exposure dose @ 365 nm**	mJ cm ⁻²	50 - 70	70 - 110	120 - 160	150 - 5000			
Developer		ma-D 532/S, mr-D 526/S (TMAH based) for greyscale lithography ma-D 331 (NaOH based) for standard lithography						

^{*} Resists with different viscosities available as custom-made products


Resist patterning with Laser Direct Writing

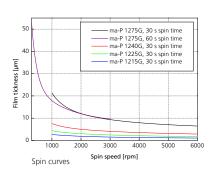
Convex and concave hexagonal lenses, 60 µm diameter*

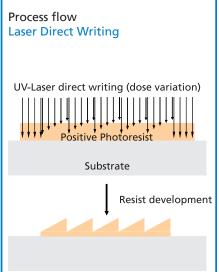


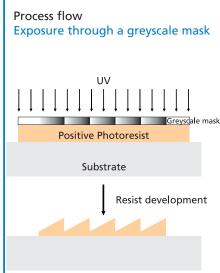
Test patterm, 63 µm pattern denth*

Pyramids, 10 µm base width, 5 µm height, 45 °angle**

- * Patterned at Heidelberg Instruments
- ** by courtesy of IMS CHIPS




Fresnel lens, 2 mm diameter, patterned in ma-P 1275G


ma-P 1200G

for greyscale lithography

Specifically designed for the requirements of greyscale lithography, application in standard binary lithography also possible.

- Reduced contrast, also in thin films
- Film thickness 1 60 μm and higher
- Reduced outgassing at laser exposure with higher intensity
- Max. 70 80 μm greyscale pattern depth possible
- Aqueous alkaline development
- Suitable for pattern reflow after standard binary lithography

Main applications

Use of manufactured 3D patterns in microoptics, MEMS and MOEMS and displays

Pattern transfer by

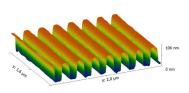
- UV and thermal moulding
- Electroplating
- Etching

^{**} Mask aligner broadband exposure

Thin Film Positive Photoresists in Laser Interference Lithography

Resist		mr-P 1201LIL	mr-P 1202LIL		
Film thickness @ 3000 rpm	μm	0.1	0.2		
Spin coating	rpm	3000			
Spectral sensitivity	nm	330 – 450			
Exposure dose @ 405 nm	mJ cm ⁻²	15 – 50			
Developer		mr-D 374/S (metal ion bearing, silicate/ phosphate based)			

Resist patterning with laser interference lithography


Diffractive optic: laminar grating (50 x 30 mm²), 170 nm thick mr-P 1202LIL, 400 lines/ mm

mr-P 1202LIL, 400 lines/ mm

Si pattern after RIE etching, 400 lines/ mm

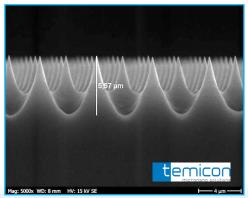
100 nm thick mr P 1201LIL, 125 nm pattern width

mr-P 1200LIL for high resolution laser interference lithography

- Steep sidewalls due to high contrast enable high quality etched pattern
- Good etch resistance
- Film thickness 100....500 nm

Main applications

- Masking of substrate surface during fabrication of steep-edged nano structures for diffractive optics:
- Laminary gratings
- VLS gratings

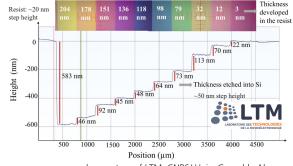

Process flow Laser Interference Lithography and etching Exposure Intensity distribution. Expose (LLL) Develop RIE Resist removal

Greyscale photoresists in special applications

mr-P 1200G

in laser interference lithography

Moth eye patterns for pattern transfer; 10 μ m thick ma-P 1275G patterned by Laser Interference Lithography @ 351 nm; 5.6 μ m pattern depth



by courtesy of temicon GmbH

mr-P 1200G

for very high vertical pattern resolution

Si staircase structure for Fabry-Perot μ -interferometers array; 500 nm thick ma-P 1200G resist patterned by Laser Direct Writing @ 405 nm¹⁾

by courtesy of LTM, CNRS/ Univ. Grenoble Alpes

¹⁾ N. Gerges, C. Petit-Etienne, M. Panabière, J. Boussey, Y. Ferrec, C. Gourgon; Optimized ultraviolet grayscale process for high vertical resolution applied to spectral imagers; J. Vac. Sci. Technol. B 39 (2021); doi: 10.1116/6.0001273