

UV-Curable Hybrid Polymers

High perfomance materials for micro optics, photonics...

Properties of the cured materials												
Parameter	OrmoComp®	OrmoClear®	OrmoClear®30	OrmoClear®FX	OrmoClad	OrmoCore	OrmoStamp®	OrmoStamp [®] FF_XP				
Refractive Index @ 589 nm	1.52	1.55	1.56	1.55	1.53	1.55	1.51	1.51				
Transmission @ 400 nm [%], layer thickness 120 μm	99.3	98.8	98.7	98.5	91.2	91.2	99.1	98.3				
Abbe number	47	34	34	34	33	34	51	tbd.				
dn/dT (589 nm) [10⁻⁴ K]	-2.0	-2.1	-2.3	-2.7	-2.7	-2.2	-1.5	tbd.				
CTE (20 - 150 °C) [ppm/K]	150	150	160	160	180	150	140	tbd.				
Young's modulus [GPa]	~1	~1.2	~0.8	n.d.	~0.5	~1	~0.6	tbd.				
Shore D Hardness*	75	75	>80	80	80	75	>80	tbd.				
Optical loss [dB/cm] @ 1310/1550 nm, TE mode0	0.3/0.2	0.3/0.7	n.d.	0.3/0.4	0.3/0.5	0.3/0.7	nd	nd				
Application examples	Micro lenses and MLAs, waveguides, gratings, DOEs, micro fluidics, lab-on-chip				Waveguides		Fabrication of polymeric working stamps					

* According to DIN53505 with cone tip 30

** Any viscosity between 30and 30 Pa*s available upon request

Properties of the liquid materials

Parameter	OrmoComp®	OrmoClear®	OrmoClear®30	OrmoClear [®] FX	OrmoClad	OrmoCore	OrmoStamp®	OrmoStamp [®] FF_XP		
Viscosity @ 25 °C [Pa*s]	2.0 ± 0.5	2.9 ± 0.3	30 ± 3	1.5 ± 0.3	2.5 ± 0.5	2.9 ± 0.4	0.5 ± 0.2	0.5 ± 0.1		
Density [g/cm ²]	1.14	1.17	1.18	1.18	1.21	1.17	1.14	1.11		
Film thickness by spin-coating [µm] 3000 rpm	20	30	100	20	30	30	10	10		
6000 - 1000 rpm	10 - 60	20 - 95	50 - 270	10 - 60	20 - 90	20 - 90	5 - 35	tbd.		
Volume shrinkage [%]	5 - 7	3 - 5	<2	3 - 5	2 - 5	2 - 5	4 - 6	4 - 6		
Oxygen sensitivity during UV-curing	no	yes	yes	no	yes	yes	yes	no		
PFAS-free	yes	yes	yes	yes	no	yes	no	yes		

A TIME A LOOP

... and more

Replicated 16 level DOE structure in OrmoStamp[®] with 500 nm pixel size (Courtesy of NILT, Denmark)

Microlens array replicated in OrmoStamp[®] (Courtesy of Carl Zeiss Jena GmbH, Germany)

Waveguides in OrmoCore on OrmoClad made by UV-lithography (Courtesy of TU Dresden, Germany)

Binary test pattern for UV lithography in OrmoComp[®]

Metalens structure fabricated in OrmoComp[®] by 2PP (Courtesy of HIMT, Germany)

Structure printed by 2PP in OrmoComp[®] for cell studies (Courtesy of KIT, Germany)

Diffractive optical structure replicated in OrmoClear®

Slanted gratings in OrmoStamp[®] fabricated by replication (Courtesy of NILT, Denmark)

Cavity of 1.5 mm diameter in OrmoComp[®] fabricated by UV-lithography

Line & Space pattern in OrmoComp[®] using i-line stepper lithography

Optical structure fabricated in Ormo-Comp[®] by 2PP (Courtesy of nanoscribe, Germany)

Microfluidic structure printed in OrmoComp[®] by 2PP (Courtesy of HIMT, Germany)

Hybrid polymers applications examples

OrmoComp[®] microlenses on glass fabricated by wafer level UV-replication (Courtesy of FhG IOF, Germany)

10 mm stent structure fabricated by 2PP in OrmoClear®FX (Courtesy of Vital3D Technologies, Lithuania)

Microlens array in OrmoComp[®] fabricated by step&repeat UV-replication (Courtesy of FhG IOF, Germany)

Scaffold of a human ear in OrmoComp[®] fabricated by 2PP (Courtesy of HIMT, Germany)

Optical component with integrated microlens array made of OrmoComp[®] (Courtesy of FhG IOF, Germany)

OrmoComp[®] macroscopic lens fabricated by combination of soft NIL and inkjet printing

Transparent polymer working stamps

Nanometer test pattern in OrmoStamp®FF_XP on polycarbonate foil

Main features

- ⇒ For UV and Thermal NIL
- ⇒ Cost efficient alternative to quartz
- ⇒ Excellent pattern replication down to 10 nm
- ⇒ High mechanical stability

OrmoStamp[®] on glass substrate

Replication in OrmoStamp[®] using 6 inch glass substrate

Hybrid polymers highlights and experimental products

Highlight: Our classic stamp material now PFAS free - OrmoStamp®FF_XP

Main features

- ⇒ Based on proven base recipe but now PFAS free
- ⇒ Improved wetting behavior and homogeneity in spin coating applications
- ⇒ Improved shelf life
- ⇒ Experimental inkjetable version available

Experimental products:

OrmoEndur_XP with enhanced durability for automotive projected lighting

Main features

- ⇒ Preservation of transarency >95% after 1000 h @130 °C in 500 µm film
- ⇒ Maintainance of optical properties after damp heat storage (85 °C/ 85 %rH)

OrmoCoreLL_XP with ultra low optical loss for photonic integrated circuits

Main features

- ⇒ Low optical loss <0.25 dB/cm @ 1310 nm & 1550 nm
- ⇒ Refractive index ~1.45 adapted to fused silica

Contacts:

micro resist technology GmbH Köpenicker Str. 325, 12555 Berlin Germany Telefon: +49 30 64 16 70 100 E-Mail: sales@microresist.de

